Mathematical Foundations of Machine Learning

Data science and machine learning are based on mathematics. As a result, in order to be the finest data scientist possible, you must have a solid knowledge of the most important arithmetic.

Thanks to high-level tools like Scikit-learn and Keras, getting started in data science is simple.

Understanding the mathematics behind the algorithms in these libraries, on the other hand, offers up an unlimited number of options. Understanding the arithmetic behind it all may greatly boost the effect you can have over the course of your career, from spotting modeling flaws to designing new and more powerful solutions.

This course, led by deep learning pioneer Dr. Jon Krohn, gives a solid understanding of the mathematics that underpins machine learning algorithms and data science models – specifically, linear algebra and calculus.

Sections of the Course

  1. Data Structures in Linear Algebra
  2. Tensor Operations are operations on tensors.
  3. Matrix Characteristics
  4. Eigenvalues and Eigenvectors
  5. Machine Learning Matrix Operations
  6. Limits
  7. Differentiation and Derivatives
  8. Differentiation by Machine
  9. Calculus of partial derivatives
  10. Calculus of Integrals

You’ll discover plenty of hands-on assignments, Python code demos, and practical exercises throughout each lesson to help you improve your math skills!

This course on Mathematical Foundations of Machine Learning is complete, but we want to add supplementary information from relevant areas outside of math in the future, such as probability, statistics, data structures, algorithms, and optimization.

Are you prepared to excel as a data scientist? I’ll see you in class.

Who this course is for:

  • You train or deploy machine learning algorithms using high-level software libraries (e.g., scikit-learn, Keras, TensorFlow), and you’d like to understand the principles underlying the abstractions so that you can expand your skills.
  • You’re a software developer who wants to lay the groundwork for integrating machine learning algorithms into production systems.
  • Who data scientist and who wants to improve your knowledge of the topics that are at the heart of your career.
  • You’re a data analyst or A.I. enthusiast who wants to work as a data scientist or data/ML engineer, and you’re eager to learn everything there is to know about the area (which is wise!).

Convolutional Neural Networks Mastery

Download Now

Click Me For Joing Our Facebook Group For Requst Course & Getting Latest Update From Us

Source link

Leave a Reply

Your email address will not be published. Required fields are marked *